Application of Anomaly Detection Techniques to Identify Fraudulent Refunds

نویسندگان

  • Miklos A. Vasarhelyi
  • Hussein Issa
چکیده

Anomaly detection is a concept widely applied to numerous domains. Several techniques of anomaly detection have been developed over the years, in practice as well as research. The application of this concept has extended to diverse areas, from network intrusion detection to novelty detection in robot behavior. In the business world, the application of these techniques to fraud detection is of a special interest, driven by the great losses companies endure because of such fraudulent activities. This paper describes classification-based and clustering-based anomaly detection techniques and their applications, more specifically the application to the problem of certain fraudulent activities. As an illustration, the paper applies K-Means, a clustering-based algorithm, to a refund transactions dataset from a telecommunication company, with the intent of identifying fraudulent refunds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Anomaly Detection Approaches in Internet of Things

Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

A survey of anomaly detection techniques in financial domain

Anomaly detection is an important data analysis task. It is used to identify interesting and emerging patterns, trends and anomalies from data. Anomaly detection is an important tool to detect abnormalities in many different domains including financial fraud detection, computer network intrusion, human behavioural analysis, gene expression analysis and many more. Recently, in the financial sect...

متن کامل

A Fraud Detection System Based on Anomaly Intrusion Detection Systems for E-Commerce Applications

The concept of exchanging goods and services over the Internet has seen an exponential growth in popularity over the years. The Internet has been a major breakthrough of online transactions, leaping over the hurdles of currencies and geographic locations. However, the anonymous nature of the Internet does not promote an idealistic environment for transactions to occur. The increase in online tr...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014